EconPapers    
Economics at your fingertips  
 

Modeling and Mitigation for High Frequency Switching Transients Due to Energization in Offshore Wind Farms

Yanli Xin, Bo Liu, Wenhu Tang and Qinghua Wu
Additional contact information
Yanli Xin: School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China
Bo Liu: School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China
Wenhu Tang: School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China
Qinghua Wu: School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China

Energies, 2016, vol. 9, issue 12, 1-16

Abstract: This paper presents a comprehensive investigation on high frequency (HF) switching transients due to energization of vacuum circuit breakers (VCBs) in offshore wind farms (OWFs). This research not only concerns the modeling of main components in collector grids of an OWF for transient analysis (including VCBs, wind turbine transformers (WTTs), submarine cables), but also compares the effectiveness between several mainstream switching overvoltage (SOV) protection methods and a new mitigation method called smart choke. In order to accurately reproduce such HF switching transients considering the current chopping, dielectric strength (DS) recovery capability and HF quenching capability of VCBs, three models are developed, i.e., a user–defined VCB model, a HF transformer terminal model and a three-core (TC) frequency dependent model of submarine cables, which are validated through simulations and compared with measurements. Based on the above models and a real OWF configuration, a simulation model is built and several typical switching transient cases are investigated to analyze the switching transient process and phenomena. Subsequently, according to the characteristics of overvoltages, appropriate parameters of SOV mitigation methods are determined to improve their effectiveness. Simulation results indicate that the user–defined VCB model can satisfactorily simulate prestrikes and the proposed component models display HF characteristics, which are consistent with onsite measurement behaviors. Moreover, the employed protection methods can suppress induced SOVs, which have a steep front, a high oscillation frequency and a high amplitude, among which the smart choke presents a preferable HF damping effect.

Keywords: vacuum circuit breaker (VCB); switching transient; prestrikes; high frequency (HF); offshore wind farm (OWF); overvoltage mitigation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/9/12/1044/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/12/1044/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:12:p:1044-:d:84998

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1044-:d:84998