Electrodeposited Magnesium Nanoparticles Linking Particle Size to Activation Energy
Chaoqi Shen and
Kondo-Francois Aguey-Zinsou
Additional contact information
Chaoqi Shen: Merlin Group, School of Chemical Engineering, The University of New South Wales, Sydney 2052, NSW, Australia
Kondo-Francois Aguey-Zinsou: Merlin Group, School of Chemical Engineering, The University of New South Wales, Sydney 2052, NSW, Australia
Energies, 2016, vol. 9, issue 12, 1-12
Abstract:
The kinetics of hydrogen absorption/desorption can be improved by decreasing particle size down to a few nanometres. However, the associated evolution of activation energy remains unclear. In an attempt to clarify such an evolution with respect to particle size, we electrochemically deposited Mg nanoparticles on a catalytic nickel and noncatalytic titanium substrate. At a short deposition time of 1 h, magnesium particles with a size of 68 ± 11 nm could be formed on the nickel substrate, whereas longer deposition times led to much larger particles of 421 ± 70 nm. Evaluation of the hydrogen desorption properties of the deposited magnesium nanoparticles confirmed the effectiveness of the nickel substrate in facilitating the recombination of hydrogen, but also a significant decrease in activation energy from 56.1 to 37.8 kJ·mol ?1 H 2 as particle size decreased from 421 ± 70 to 68 ± 11 nm. Hence, the activation energy was found to be intrinsically linked to magnesium particle size. Such a reduction in activation energy was associated with the decrease of path lengths for hydrogen diffusion at the desorbing MgH 2 /Mg interface. Further reduction in particle size to a few nanometres to remove any barrier for hydrogen diffusion would then leave the single nucleation and growth of the magnesium phase as the only remaining rate-limiting step, assuming that the magnesium surface can effectively catalyse the dissociation/recombination of hydrogen.
Keywords: hydrogen storage; magnesium; particle size; nanosize; activation energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/12/1073/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/12/1073/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:12:p:1073-:d:85421
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().