EconPapers    
Economics at your fingertips  
 

An Effective Approach towards the Immobilization of PtSn Nanoparticles on Noncovalent Modified Multi-Walled Carbon Nanotubes for Ethanol Electrooxidation

Xi Geng, Yinjie Cen, Richard D. Sisson and Jianyu Liang
Additional contact information
Xi Geng: Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
Yinjie Cen: Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
Richard D. Sisson: Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
Jianyu Liang: Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA

Energies, 2016, vol. 9, issue 3, 1-11

Abstract: In this article, we describe an effective method to tether Pt and PtSn nanoparticles (NPs) on polyelectrolyte modified multi-walled carbon nanotubes (MWCNTs) for ethanol electrooxidation. By using a polymer wrapping technique, positively charged polyethyleneimine (PEI) was attached onto carbon nanotubes (CNTs) to provide preferential linking sites for metal precursors. Well-dispersed Pt and PtSn nanocrystals (2–5 nm) were subsequently decorated on PEI-functionalized MWCNTs through the polyol reduction method. The successful non-covalent modification of MWCNTs was confirmed by Fourier transform infrared spectroscopy (FTIR) and Zeta potential measurements. Energy dispersive X-ray (EDX) spectrum indicates approximately 20 wt % Pt loading and a desirable Pt:Sn atomic ratio of 1:1. Electrochemical analysis demonstrated that the as-synthesized PtSn/PEI-MWCNTs nanocomposite exhibited improved catalytic activity and higher poison tolerance for ethanol oxidation as compared to Pt/PEI-MWCNTs and commercial Pt/XC-72 catalysts. The enhanced electrochemical performance may be attributed to the uniform dispersion of NPs as well as the mitigating of CO self-poisoning effect by the alloying of Sn element. This modification and synthetic strategy will be studied further to develop a diversity of carbon supported Pt-based hybrid nanomaterials for electrocatalysis.

Keywords: polyethyleneimine (PEI); PtSn nanoparticles (NPs); multi-walled carbon nanotubes (MWCNTs); ethanol oxidation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/9/3/165/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/3/165/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:3:p:165-:d:65096

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:165-:d:65096