Application of the Extension Taguchi Method to Optimal Capability Planning of a Stand-alone Power System
Meng-Hui Wang,
Mei-Ling Huang,
Zi-Yi Zhan and
Chong-Jie Huang
Additional contact information
Meng-Hui Wang: Department of Electrical Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Chung-Shan Rd., Taiping District, Taichung 41170, Taiwan
Mei-Ling Huang: Department of Industrial Engineering and Management, National Chin-Yi University of Technology, No. 57, Sec. 2, Chung-Shan Rd., Taiping District, Taichung 41170, Taiwan
Zi-Yi Zhan: Department of Electrical Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Chung-Shan Rd., Taiping District, Taichung 41170, Taiwan
Chong-Jie Huang: Department of Electrical Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Chung-Shan Rd., Taiping District, Taichung 41170, Taiwan
Energies, 2016, vol. 9, issue 3, 1-17
Abstract:
An Extension Taguchi Method (ETM) is proposed on the optimized allocation of equipment capacity for solar cell power generation, wind power generation, full cells, electrolyzer and hydrogen tanks. The ETM is based on the domain knowledge containing the product specifications and allocation levels provided by suppliers and design factors since most of the renewable energy equipment available in the market comes with a specific capacity. A proper orthogonal array is used to collect 18 sets of simulation responses. The extension theory is introduced to determine the correlation function, and factor effects are used to identify the optimized capacity allocation. The hours of power shortage are simulated using Matlab for all capacity allocations at the lowest establishment cost and the optimized capacity allocation of loss of load probability (LOLP). Finally, the extension theory, extension AHP theory, ETM and Analytic Hierarchy Process (AHP) are used to determine the optimized capacity allocation of the system. Results are compared for the above four optimization simulation methods and verify that the proposed ETM surpasses the others on achieving the optimized capacity allocation.
Keywords: stand-alone power system (SAPS); extension theory; extension Taguchi method (ETM); analytic hierarchy process (AHP); loss of load probability (LOLP) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/3/174/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/3/174/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:3:p:174-:d:65290
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().