Stress and Damage Induced Gas Flow Pattern and Permeability Variation of Coal from Songzao Coalfield in Southwest China
Minghui Li,
Jie Cao and
Wenpu Li
Additional contact information
Minghui Li: State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China
Jie Cao: China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400030, China
Wenpu Li: State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China
Energies, 2016, vol. 9, issue 5, 1-16
Abstract:
The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.
Keywords: effective stress; coal permeability; gas flow pattern; Darcy’s law; coal mine methane (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/5/351/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/5/351/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:5:p:351-:d:69647
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().