Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture
Kaixin Li,
Shao Wee Lee,
Guoan Yuan,
Junxi Lei,
Shengxuan Lin,
Piyarat Weerachanchai,
Yanhui Yang and
Jing-Yuan Wang
Additional contact information
Kaixin Li: Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
Shao Wee Lee: Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
Guoan Yuan: Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
Junxi Lei: Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
Shengxuan Lin: Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
Piyarat Weerachanchai: Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
Yanhui Yang: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
Jing-Yuan Wang: Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
Energies, 2016, vol. 9, issue 6, 1-15
Abstract:
Catalytic pyrolysis behavior of synthesized microporous catalysts (conventional Zeolite Socony Mobil–5 (C-ZSM-5), highly uniform nanocrystalline ZSM-5 (HUN-ZSM-5) and ?-zeolite), Mesoporous catalysts (highly hydrothermally stable Al-MCM-41 with accessible void defects (Al-MCM-41(hhs)), Kanemite-derived folded silica (KFS-16B) and well-ordered Al-SBA-15 (Al-SBA-15(wo)) were studied with waste polyethylene (PE) and polypropylene (PP) mixture which are the main constituents in municipal solid waste. All the catalysts were characterized by Brunauer-Emmett-Teller (BET), X-ray powder diffraction (XRD), and NH3-temperature programmed desorption (TPD). The results demonstrated that microporous catalysts exhibited high yields of gas products and high selectivity for aromatics and alkene, whereas the mesoporous catalysts showed high yields of liquid products with considerable amounts of aliphatic compounds. The differences between the microporous and mesoporous catalysts could be attributed to their characteristic acidic and textural properties. A significant amount of C2–C4 gases were produced from both types of catalysts. The composition of the liquid and gas products from catalytic pyrolysis is similar to petroleum-derived fuels. In other words, products of catalytic pyrolysis of plastic waste can be potential alternatives to the petroleum-derived fuels.
Keywords: plastic recycling; catalytic pyrolysis; mesoporous catalyst; microporous catalyst; polyethylene (PE); polypropylene (PP) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/6/431/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/6/431/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:6:p:431-:d:71548
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().