EconPapers    
Economics at your fingertips  
 

Streamer Propagation and Breakdown in a Very Small Point-Insulating Plate Gap in Mineral Oil and Ester Liquids at Positive Lightning Impulse Voltage

Pawel Rozga
Additional contact information
Pawel Rozga: Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland

Energies, 2016, vol. 9, issue 6, 1-12

Abstract: This article presents the results of comparative studies on streamer propagation and breakdown in a point-insulating plate electrode system in mineral oil and two ester liquids. The studies were performed for a 10-mm gap and a positive standard lightning impulse. The work was focused on the comparison of light waveforms registered using the photomultiplier technique. The results indicated that both esters demonstrate a lower resistance against the appearance of fast energetic streamers than mineral oil. The reason for such a conclusion is that the number of lightning impulses supplied to the electrode system for which the above-mentioned fast streamers appeared at a given voltage level was always higher in the case of ester liquids than mineral oil. In terms of breakdown, the esters tested were assessed as more susceptible to the appearance of breakdown in the investigated electrode system. The number of breakdowns recorded in the case of esters was always greater than the corresponding number of breakdowns in mineral oil. This may be supposed on the basis of the obtained results that imply that, in both synthetic and natural ester, the formed breakdown channel, which bridged the gap through the surface of pressboard plate, is characterized by higher energy than in the case of mineral oil.

Keywords: streamer propagation; mineral oil; synthetic ester; natural ester; lightning impulse; breakdown (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/9/6/467/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/6/467/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:6:p:467-:d:72209

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:467-:d:72209