Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO 2 Capture
Nicholas S. Siefert,
Sarah Narburgh and
Yang Chen
Additional contact information
Nicholas S. Siefert: National Energy Technology Laboratory, USA Development of Energy, Pittsburgh, PA 15025, USA
Sarah Narburgh: National Energy Technology Laboratory, USA Development of Energy, Pittsburgh, PA 15025, USA
Yang Chen: National Energy Technology Laboratory, USA Development of Energy, Pittsburgh, PA 15025, USA
Energies, 2016, vol. 9, issue 9, 1-19
Abstract:
We have conducted comprehensive exergy analyses of three integrated gasification combined cycle with carbon capture and storage (IGCC-CCS) power plant configurations: (1) a baseline model using Selexol™ for H 2 S/CO 2 removal; (2) a modified version that adds a H 2 -selective membrane before the Selexol™ acid gas removal system; and (3) a modified baseline version that uses a CO 2 -selective membrane before the Selexol™ acid gas removal system. While holding the coal input flow rate and the CO 2 captured flow rates constant, it was determined that the H 2 -selective membrane case had a higher net power output (584 MW) compared to the baseline (564 MW) and compared to the CO 2 -selective membrane case (550 MW). Interestingly, the CO 2 -selective membrane case destroyed the least amount of exergy within the power plant (967 MW), compared with the Baseline case (999 MW) and the H 2 -membrane case (972 MW). The main problem with the CO 2 -selective membrane case was the large amount of H 2 (48 MW worth of H 2 chemical exergy) remaining within the supercritical CO 2 that exits the power plant. Regardless of the CO 2 capture process used, the majority of the exergy destruction occurred in the gasifier (305 MW) and gas turbine (~380 MW) subsystems, suggesting that these two areas should be key areas of focus of future improvements.
Keywords: exergy analysis; coal gasification; precombustion CO 2 capture; process system modeling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/9/669/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/9/669/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:9:p:669-:d:76588
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().