Demonstration of the Performance of an Air-Type Photovoltaic Thermal (PVT) System Coupled with a Heat-Recovery Ventilator
Jin-Hee Kim,
Jong-Gwon Ahn and
Jun-Tae Kim
Additional contact information
Jin-Hee Kim: Green Energy Technology Research Center, Kongju National University, Gongju 31080, Korea
Jong-Gwon Ahn: Graduate School of Energy Systems Engineering, Kongju National University, Gongju 31080, Korea
Jun-Tae Kim: Department of Architecture Engineering, Kongju National University, Gongju 31080, Korea
Energies, 2016, vol. 9, issue 9, 1-15
Abstract:
A heat-recovery ventilator (HRV) effectively conducts ventilation by recovering waste heat from indoors to outdoors during heating periods. However, dew condensation associated with the HRV system may arise due to the difference between the indoor temperature and the very low outdoor temperature in winter, and this can decrease the heat exchange efficiency. These problems can be solved by the pre-heating of the incoming air, but additional energy is required when pursuing such a strategy. On the other hand, an air-type photovoltaic thermal (PVT) system produces electricity and thermal energy simultaneously using air as the heat transfer medium. Moreover, the heated air from the air-type PVT system can be connected to the HRV to pre-heat the supply air instead of taking in the cold outdoor air. Thus, the ventilation efficiency can be improved and the problems arising during the heating period can be resolved. Consequentially, the heating energy required in a building can be reduced, with additional electricity acquired as well. In this paper, the performance of an air-type PVT system coupled with an HRV is assessed. To do this, air-type PVT collectors operating at 1 kW p were installed in an experimental house and coupled to an HRV system. Thermal performance and heating energy required during the winter season were analyzed experimentally. Furthermore, the electrical performances of the air-type PVT system with and without ventilation at the back side of the PV during the summer season were analyzed.
Keywords: air-type photovoltaic thermal; heat recovery ventilator; thermal and electrical efficiency; heating energy demand; demonstration performance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.mdpi.com/1996-1073/9/9/728/pdf (application/pdf)
https://www.mdpi.com/1996-1073/9/9/728/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:9:y:2016:i:9:p:728-:d:77819
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().