EconPapers    
Economics at your fingertips  
 

Goes-13 IR Images for Rainfall Forecasting in Hurricane Storms

Marilu Meza-Ruiz and Alfonso Gutierrez-Lopez
Additional contact information
Marilu Meza-Ruiz: Water Research Center, Centro de Investigaciones del Agua-Queretaro (CIAQ), Young Water Professionals, International Water Association-Mexico, Universidad Autonoma de Queretaro, Queretaro 76010, Mexico
Alfonso Gutierrez-Lopez: Water Research Center, Centro de Investigaciones del Agua-Queretaro (CIAQ), International Flood Initiative, Latin-American and the Caribbean Region (IFI-LAC), Intergovernmental Hydrological Programme (IHP-UNESCO), Universidad Autonoma de Queretaro, Queretaro 76010, Mexico

Forecasting, 2020, vol. 2, issue 2, 1-17

Abstract: Currently, it is possible to access a large amount of satellite weather information from monitoring and forecasting severe storms. However, there are no methods of employing satellite images that can improve real-time early warning systems in different regions of Mexico. The auto-estimator is the most commonly used technique that was developed for specific locations in the United States of America (32°–49° latitude) for the type of convective storms. However, the estimation of precipitation intensities for meteorological conditions in tropic latitudes, using the auto-estimator technique, needs to be re-adjusted and calibrated. It is necessary to improve this type of technique that allows decision-makers to have hydro-informatic tools capable of improving early warning systems in tropical regions (15°–25° Mexican tropic latitude). The main objective of the work is to estimate rainfall from satellite imagery in the infrared (IR) spectrum from the Geostationary Operational Environmental Satellite (GOES), validating these estimates with a network of surface rain gauges. Using the GOES-13 IR images every 15 min and using the auto-estimator, a downscaling of six hurricanes was performed from which surface precipitation events were measured. The two main difficulties were to match the satellite images taken every 15 min with the surface data measured every 10 min and to develop a program in C+ that would allow the systematic analysis of the images. The results of this work allow us to get a new adjustment of coefficients in a new equation of the auto-estimator, valid for rain produced by hurricanes, something that has not been done until now. Although no universal relationship has been found for hurricane rainfall, it is evident that the original formula of the auto-estimator technique needs to be modified according to geographical latitude.

Keywords: rainfall intensity; hurricane Dean; hurricane Ernesto; auto-estimator; GOES; Mexico (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-9394/2/2/5/pdf (application/pdf)
https://www.mdpi.com/2571-9394/2/2/5/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:2:y:2020:i:2:p:5-101:d:352415

Access Statistics for this article

Forecasting is currently edited by Ms. Joss Chen

More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jforec:v:2:y:2020:i:2:p:5-101:d:352415