EconPapers    
Economics at your fingertips  
 

Deterministic-Probabilistic Approach to Predict Lightning-Caused Forest Fires in Mounting Areas

Nikolay Baranovskiy
Additional contact information
Nikolay Baranovskiy: School of Energy and Power Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia

Forecasting, 2021, vol. 3, issue 4, 1-21

Abstract: Forest fires from lightnings create a tense situation in various regions of states with forested areas. It is noted that in mountainous areas this is especially important in view of the geophysical processes of lightning activity. The aim of the study is to develop a deterministic-probabilistic approach to predicting forest fire danger due to lightning activity in mountainous regions. To develop a mathematical model, the main provisions of the theory of probability and mathematical statistics, as well as the general theory of heat transfer, were used. The scientific novelty of the research is due to the complex use of probabilistic criteria and deterministic mathematical models of tree ignition by a cloud-to-ground lightning discharge. The paper presents probabilistic criteria for predicting forest fire danger, taking into account the lightning activity, meteorological data, and forest growth conditions, as well as deterministic mathematical models of ignition of deciduous and coniferous trees by electric current of a cloud-to-ground lightning discharge. The work uses synthetic data on the discharge parameters and characteristics of the forest-covered area, which correspond to the forest fire situation in the Republic of Altay and the Republic of Buryatia (Russian Federation). The dependences of the probability for occurrence of forest fires on various parameters have been obtained.

Keywords: forest fire; danger; probability; lightning; deterministic; probabilistic; prediction; mounting area (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-9394/3/4/43/pdf (application/pdf)
https://www.mdpi.com/2571-9394/3/4/43/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:3:y:2021:i:4:p:43-715:d:644362

Access Statistics for this article

Forecasting is currently edited by Ms. Joss Chen

More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jforec:v:3:y:2021:i:4:p:43-715:d:644362