On the Autoregressive Time Series Model Using Real and Complex Analysis
Torsten Ullrich
Additional contact information
Torsten Ullrich: Fraunhofer Austria Research GmbH, 8010 Graz, Austria
Forecasting, 2021, vol. 3, issue 4, 1-13
Abstract:
The autoregressive model is a tool used in time series analysis to describe and model time series data. Its main structure is a linear equation using the previous values to compute the next time step; i.e., the short time relationship is the core component of the autoregressive model. Therefore, short-term effects can be modeled in an easy way, but the global structure of the model is not obvious. However, this global structure is a crucial aid in the model selection process in data analysis. If the global properties are not reflected in the data, a corresponding model is not compatible. This helpful knowledge avoids unsuccessful modeling attempts. This article analyzes the global structure of the autoregressive model through the derivation of a closed form. In detail, the closed form of an autoregressive model consists of the basis functions of a fundamental system of an ordinary differential equation with constant coefficients; i.e., it consists of a combination of polynomial factors with sinusoidal, cosinusoidal, and exponential functions. This new insight supports the model selection process.
Keywords: data analysis; time series; autoregressive model (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2571-9394/3/4/44/pdf (application/pdf)
https://www.mdpi.com/2571-9394/3/4/44/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:3:y:2021:i:4:p:44-728:d:653852
Access Statistics for this article
Forecasting is currently edited by Ms. Joss Chen
More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().