Predicting Credit Scores with Boosted Decision Trees
João Bastos
Forecasting, 2022, vol. 4, issue 4, 1-11
Abstract:
Credit scoring models help lenders decide whether to grant or reject credit to applicants. This paper proposes a credit scoring model based on boosted decision trees, a powerful learning technique that aggregates several decision trees to form a classifier given by a weighted majority vote of classifications predicted by individual decision trees. The performance of boosted decision trees is evaluated using two publicly available credit card application datasets. The prediction accuracy of boosted decision trees is benchmarked against two alternative machine learning techniques: the multilayer perceptron and support vector machines. The results show that boosted decision trees are a competitive technique for implementing credit scoring models.
Keywords: forecasting; credit scoring; credit risk; boosted decision trees; machine learning (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2571-9394/4/4/50/pdf (application/pdf)
https://www.mdpi.com/2571-9394/4/4/50/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:4:y:2022:i:4:p:50-935:d:975842
Access Statistics for this article
Forecasting is currently edited by Ms. Joss Chen
More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().