EconPapers    
Economics at your fingertips  
 

Large Language Models: Their Success and Impact

Spyros Makridakis, Fotios Petropoulos and Yanfei Kang ()
Additional contact information
Spyros Makridakis: Institute For the Future, University of Nicosia, Nicosia 2414, Cyprus
Fotios Petropoulos: Institute For the Future, University of Nicosia, Nicosia 2414, Cyprus
Yanfei Kang: School of Economics and Management, Beihang University, Beijing 100191, China

Forecasting, 2023, vol. 5, issue 3, 1-14

Abstract: ChatGPT, a state-of-the-art large language model (LLM), is revolutionizing the AI field by exhibiting humanlike skills in a range of tasks that include understanding and answering natural language questions, translating languages, writing code, passing professional exams, and even composing poetry, among its other abilities. ChatGPT has gained an immense popularity since its launch, amassing 100 million active monthly users in just two months, thereby establishing itself as the fastest-growing consumer application to date. This paper discusses the reasons for its success as well as the future prospects of similar large language models (LLMs), with an emphasis on their potential impact on forecasting, a specialized and domain-specific field. This is achieved by first comparing the correctness of the answers of the standard ChatGPT and a custom one, trained using published papers from a subfield of forecasting where the answers to the questions asked are known, allowing us to determine their correctness compared to those of the two ChatGPT versions. Then, we also compare the responses of the two versions on how judgmental adjustments to the statistical/ML forecasts should be applied by firms to improve their accuracy. The paper concludes by considering the future of LLMs and their impact on all aspects of our life and work, as well as on the field of forecasting specifically. Finally, the conclusion section is generated by ChatGPT, which was provided with a condensed version of this paper and asked to write a four-paragraph conclusion.

Keywords: Large Language Models; Forecasting; ChatGPT (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2571-9394/5/3/30/pdf (application/pdf)
https://www.mdpi.com/2571-9394/5/3/30/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:5:y:2023:i:3:p:30-549:d:1225093

Access Statistics for this article

Forecasting is currently edited by Ms. Joss Chen

More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jforec:v:5:y:2023:i:3:p:30-549:d:1225093