Deep Survival Models Can Improve Long-Term Mortality Risk Estimates from Chest Radiographs
Mingzhu Liu (),
Chirag Nagpal and
Artur Dubrawski
Additional contact information
Mingzhu Liu: Auton Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Chirag Nagpal: Auton Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Artur Dubrawski: Auton Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Forecasting, 2024, vol. 6, issue 2, 1-14
Abstract:
Deep learning has recently demonstrated the ability to predict long-term patient risk and its stratification when trained on imaging data such as chest radiographs. However, existing methods formulate estimating patient risk as a binary classification, typically ignoring or limiting the use of temporal information, and not accounting for the loss of patient follow-up, which reduces the fidelity of estimation and limits the prediction to a certain time horizon. In this paper, we demonstrate that deep survival and time-to-event prediction models can outperform binary classifiers at predicting mortality and risk of adverse health events. In our study, deep survival models were trained to predict risk scores from chest radiographs and patient demographic information in the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial (25,433 patient data points used in this paper) for 2-, 5-, and 10-year time horizons. Binary classification models that predict mortality at these time horizons were built as baselines. Compared to the considered alternative, deep survival models improve the Brier score (5-year: 0.0455 [95% CI, 0.0427–0.0482] vs. 0.0555 [95% CI, (0.0535–0.0575)], p < 0.05) and expected calibration error (ECE) (5-year: 0.0110 [95% CI, 0.0080–0.0141] vs. 0.0747 [95% CI, 0.0718–0.0776], p < 0.05) for those fixed time horizons and are able to generate predictions for any time horizon, without the need to retrain the models. Our study suggests that deep survival analysis tools can outperform binary classification in terms of both discriminative performance and calibration, offering a potentially plausible solution for forecasting risk in clinical practice.
Keywords: survival analysis; deep learning; radiology; forecasting risk (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2571-9394/6/2/22/pdf (application/pdf)
https://www.mdpi.com/2571-9394/6/2/22/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:6:y:2024:i:2:p:22-417:d:1402397
Access Statistics for this article
Forecasting is currently edited by Ms. Joss Chen
More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().