EconPapers    
Economics at your fingertips  
 

A Data-Driven Multi-Step Flood Inundation Forecast System

Felix Schmid and Jorge Leandro ()
Additional contact information
Felix Schmid: Chair of Hydromechanics and Hydraulic Engineering, Research Institute Water and Environment, University of Siegen, 57076 Siegen, Germany
Jorge Leandro: Chair of Hydromechanics and Hydraulic Engineering, Research Institute Water and Environment, University of Siegen, 57076 Siegen, Germany

Forecasting, 2024, vol. 6, issue 3, 1-21

Abstract: Inundation maps that show water depths that occur in the event of a flood are essential for protection. Especially information on timings is crucial. Creating a dynamic inundation map with depth data in temporal resolution is a major challenge and is not possible with physical models, as these are too slow for real-time predictions. To provide a dynamic inundation map in real-time, we developed a data-driven multi-step inundation forecast system for fluvial flood events. The forecast system is based on a convolutional neural network (CNN), feature-informed dense layers, and a recursive connection from the predicted inundation at timestep t as a new input for timestep t + 1. The forecast system takes a hydrograph as input, cuts it at desired timesteps (t), and outputs the respective inundation for each timestep, concluding in a dynamic inundation map with a temporal resolution (t). The prediction shows a Critical Success Index (CSI) of over 90%, an average Root Mean Square Error (RMSE) of 0.07, 0.12, and 0.15 for the next 6 h, 12 h, and 24 h, respectively, and an individual RMSE value below 0.3 m, for all test datasets when compared with the results from a physically based model.

Keywords: real-time forecasting; urban flooding; artificial neural network; convolutional neural network; temporal and spatial distribution (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-9394/6/3/39/pdf (application/pdf)
https://www.mdpi.com/2571-9394/6/3/39/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:6:y:2024:i:3:p:39-781:d:1477866

Access Statistics for this article

Forecasting is currently edited by Ms. Joss Chen

More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jforec:v:6:y:2024:i:3:p:39-781:d:1477866