EconPapers    
Economics at your fingertips  
 

Forecasting Short- and Long-Term Wind Speed in Limpopo Province Using Machine Learning and Extreme Value Theory

Kgothatso Makubyane and Daniel Maposa ()
Additional contact information
Kgothatso Makubyane: Department of Statistics and Operations Research, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
Daniel Maposa: Department of Statistics and Operations Research, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa

Forecasting, 2024, vol. 6, issue 4, 1-23

Abstract: This study investigates wind speed prediction using advanced machine learning techniques, comparing the performance of Vanilla long short-term memory (LSTM) and convolutional neural network (CNN) models, alongside the application of extreme value theory (EVT) using the r-largest order generalised extreme value distribution ( G E V D r ). Over the past couple of decades, the academic literature has transitioned from conventional statistical time series models to embracing EVT and machine learning algorithms for the modelling of environmental variables. This study adds value to the literature and knowledge of modelling wind speed using both EVT and machine learning. The primary aim of this study is to forecast wind speed in the Limpopo province of South Africa to showcase the dependability and potential of wind power generation. The application of CNN showcased considerable predictive accuracy compared to the Vanilla LSTM, achieving 88.66% accuracy with monthly time steps. The CNN predictions for the next five years, in m/s, were 9.91 (2024), 7.64 (2025), 7.81 (2026), 7.13 (2027), and 9.59 (2028), slightly outperforming the Vanilla LSTM, which predicted 9.43 (2024), 7.75 (2025), 7.85 (2026), 6.87 (2027), and 9.43 (2028). This highlights CNN’s superior ability to capture complex patterns in wind speed dynamics over time. Concurrently, the analysis of the G E V D r across various order statistics identified G E V D r = 2 as the optimal model, supported by its favourable evaluation metrics in terms of Akaike information criteria (AIC) and Bayesian information criteria (BIC). The 300-year return level for G E V D r = 2 was found to be 22.89 m/s, indicating a rare wind speed event. Seasonal wind speed analysis revealed distinct patterns, with winter emerging as the most efficient season for wind, featuring a median wind speed of 7.96 m/s. Future research could focus on enhancing prediction accuracy through hybrid algorithms and incorporating additional meteorological variables. To the best of our knowledge, this is the first study to successfully combine EVT and machine learning for short- and long-term wind speed forecasting, providing a novel framework for reliable wind energy planning.

Keywords: AIC; BIC; CNN; EVT; GEVD r; Vanilla LSTM; wind power generation (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-9394/6/4/44/pdf (application/pdf)
https://www.mdpi.com/2571-9394/6/4/44/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:6:y:2024:i:4:p:44-907:d:1492137

Access Statistics for this article

Forecasting is currently edited by Ms. Joss Chen

More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jforec:v:6:y:2024:i:4:p:44-907:d:1492137