EconPapers    
Economics at your fingertips  
 

Multifeature-Driven Multistep Wind Speed Forecasting Using NARXR and Modified VMD Approaches

Rose Ellen Macabiog () and Jennifer Dela Cruz
Additional contact information
Rose Ellen Macabiog: College of Engineering and Architecture, University of the Cordilleras, Baguio City 2600, Philippines
Jennifer Dela Cruz: School of Graduate Studies, Mapua University, Manila 1002, Philippines

Forecasting, 2025, vol. 7, issue 1, 1-24

Abstract: The global demand for clean and sustainable energy has driven the rapid growth of wind power. However, wind farm managers face the challenge of forecasting wind power for efficient power generation and management. Accurate wind speed forecasting (WSF) is vital for predicting wind power; yet, the variability and intermittency of the wind make forecasting wind speeds difficult. Consequently, WSF remains a challenging area of wind research, driving continuous improvement in the field. This study aimed to enhance the optimization of multifeature-driven short multistep WSF. The primary contributions of this research include the integration of ReliefF feature selection (RFFS), a novel approach to variational mode decomposition for multifeature decomposition (NAMD), and a recursive non-linear autoregressive with exogenous inputs (NARXR) neural network. In particular, RFFS aids in identifying meteorological features that significantly influence wind speed variations, thus ensuring the selection of the most impactful features; NAMD improves the accuracy of neural network training on historical data; and NARXR enhances the overall robustness and stability of the wind speed forecasting results. The experimental results demonstrate that the predictive accuracy of the proposed NAMD–NARXR hybrid model surpasses that of the models used for comparison, as evidenced by the forecasting error and statistical metrics. Integrating the strengths of RFFS, NAMD, and NARXR enhanced the forecasting performance of the proposed NAMD–NARXR model, highlighting its potential suitability for applications requiring multifeature-driven short-term multistep WSF.

Keywords: NAMD; NARX; recursive multistep; ReliefF; wind speed forecasting (search for similar items in EconPapers)
JEL-codes: A1 B4 C0 C1 C2 C3 C4 C5 C8 M0 Q2 Q3 Q4 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2571-9394/7/1/12/pdf (application/pdf)
https://www.mdpi.com/2571-9394/7/1/12/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jforec:v:7:y:2025:i:1:p:12-:d:1606238

Access Statistics for this article

Forecasting is currently edited by Ms. Joss Chen

More articles in Forecasting from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-12
Handle: RePEc:gam:jforec:v:7:y:2025:i:1:p:12-:d:1606238