EconPapers    
Economics at your fingertips  
 

Chinese Text Classification Model Based on Deep Learning

Yue Li, Xutao Wang and Pengjian Xu
Additional contact information
Yue Li: School of Computer Science and Technology, Donghua University, Shanghai 201620, China
Xutao Wang: School of Computer Science and Technology, Donghua University, Shanghai 201620, China
Pengjian Xu: School of Computer Science and Technology, Donghua University, Shanghai 201620, China

Future Internet, 2018, vol. 10, issue 11, 1-12

Abstract: Text classification is of importance in natural language processing, as the massive text information containing huge amounts of value needs to be classified into different categories for further use. In order to better classify text, our paper tries to build a deep learning model which achieves better classification results in Chinese text than those of other researchers’ models. After comparing different methods, long short-term memory (LSTM) and convolutional neural network (CNN) methods were selected as deep learning methods to classify Chinese text. LSTM is a special kind of recurrent neural network (RNN), which is capable of processing serialized information through its recurrent structure. By contrast, CNN has shown its ability to extract features from visual imagery. Therefore, two layers of LSTM and one layer of CNN were integrated to our new model: the BLSTM-C model (BLSTM stands for bi-directional long short-term memory while C stands for CNN.) LSTM was responsible for obtaining a sequence output based on past and future contexts, which was then input to the convolutional layer for extracting features. In our experiments, the proposed BLSTM-C model was evaluated in several ways. In the results, the model exhibited remarkable performance in text classification, especially in Chinese texts.

Keywords: Chinese text classification; long short-term memory; convolutional neural network (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1999-5903/10/11/113/pdf (application/pdf)
https://www.mdpi.com/1999-5903/10/11/113/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:10:y:2018:i:11:p:113-:d:184238

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:10:y:2018:i:11:p:113-:d:184238