EconPapers    
Economics at your fingertips  
 

A Fast and Lightweight Method with Feature Fusion and Multi-Context for Face Detection

Lei Zhang and Xiaoli Zhi
Additional contact information
Lei Zhang: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
Xiaoli Zhi: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

Future Internet, 2018, vol. 10, issue 8, 1-14

Abstract: Convolutional neural networks (CNN for short) have made great progress in face detection. They mostly take computation intensive networks as the backbone in order to obtain high precision, and they cannot get a good detection speed without the support of high-performance GPUs (Graphics Processing Units). This limits CNN-based face detection algorithms in real applications, especially in some speed dependent ones. To alleviate this problem, we propose a lightweight face detector in this paper, which takes a fast residual network as backbone. Our method can run fast even on cheap and ordinary GPUs. To guarantee its detection precision, multi-scale features and multi-context are fully exploited in efficient ways. Specifically, feature fusion is used to obtain semantic strongly multi-scale features firstly. Then multi-context including both local and global context is added to these multi-scale features without extra computational burden. The local context is added through a depthwise separable convolution based approach, and the global context by a simple global average pooling way. Experimental results show that our method can run at about 110 fps on VGA (Video Graphics Array)-resolution images, while still maintaining competitive precision on WIDER FACE and FDDB (Face Detection Data Set and Benchmark) datasets as compared with its state-of-the-art counterparts.

Keywords: convolutional neural networks; face detection; feature fusion; context; speed; precision (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/10/8/80/pdf (application/pdf)
https://www.mdpi.com/1999-5903/10/8/80/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:10:y:2018:i:8:p:80-:d:164296

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:10:y:2018:i:8:p:80-:d:164296