EconPapers    
Economics at your fingertips  
 

A Multi-Attention Network for Aspect-Level Sentiment Analysis

Qiuyue Zhang and Ran Lu
Additional contact information
Qiuyue Zhang: School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China
Ran Lu: School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China

Future Internet, 2019, vol. 11, issue 7, 1-13

Abstract: Aspect-level sentiment analysis (ASA) aims at determining the sentiment polarity of specific aspect term with a given sentence. Recent advances in attention mechanisms suggest that attention models are useful in ASA tasks and can help identify focus words. Or combining attention mechanisms with neural networks are also common methods. However, according to the latest research, they often fail to extract text representations efficiently and to achieve interaction between aspect terms and contexts. In order to solve the complete task of ASA, this paper proposes a Multi-Attention Network (MAN) model which adopts several attention networks. This model not only preprocesses data by Bidirectional Encoder Representations from Transformers (BERT), but a number of measures have been taken. First, the MAN model utilizes the partial Transformer after transformation to obtain hidden sequence information. Second, because words in different location have different effects on aspect terms, we introduce location encoding to analyze the impact on distance from ASA tasks, then we obtain the influence of different words with aspect terms through the bidirectional attention network. From the experimental results of three datasets, we could find that the proposed model could achieve consistently superior results.

Keywords: aspect-level; sentiment analysis; multi-attention (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/11/7/157/pdf (application/pdf)
https://www.mdpi.com/1999-5903/11/7/157/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:11:y:2019:i:7:p:157-:d:248732

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:11:y:2019:i:7:p:157-:d:248732