Expectations and limitations of Cyber-Physical Systems (CPS) for Advanced Manufacturing: A View from the Grinding Industry
Iñigo Pombo,
Leire Godino,
Jose Antonio Sánchez and
Rafael Lizarralde
Additional contact information
Iñigo Pombo: Faculty of Engineering Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Bizkaia, Spain
Leire Godino: Faculty of Engineering Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Bizkaia, Spain
Jose Antonio Sánchez: Faculty of Engineering Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Bizkaia, Spain
Rafael Lizarralde: IDEKO, Arriaga Kalea, 2, 20870 Elgoibar, Gipuzkoa, Spain
Future Internet, 2020, vol. 12, issue 9, 1-15
Abstract:
Grinding is a critical technology in the manufacturing of high added-value precision parts, accounting for approximately 20–25% of all machining costs in the industrialized world. It is a commonly used process in the finishing of parts in numerous key industrial sectors such as transport (including the aeronautical, automotive and railway industries), and energy or biomedical industries. As in the case of many other manufacturing technologies, grinding relies heavily on the experience and knowledge of the operatives. For this reason, considerable efforts have been devoted to generating a systematic and sustainable approach that reduces and eventually eliminates costly trial-and-error strategies. The main contribution of this work is that, for the first time, a complete digital twin (DT) for the grinding industry is presented. The required flow of information between numerical simulations, advanced mechanical testing and industrial practice has been defined, thus producing a virtual mirror of the real process. The structure of the DT comprises four layers, which integrate: (1) scientific knowledge of the process (advanced process modeling and numerical simulation); (2) characterization of materials through specialized mechanical testing; (3) advanced sensing techniques, to provide feedback for process models; and (4) knowledge integration in a configurable open-source industrial tool. To this end, intensive collaboration between all the involved agents (from university to industry) is essential. One of the most remarkable results is the development of new and more realistic models for predicting wheel wear, which currently can only be known in industry through costly trial-and-error strategies. Also, current work is focused on the development of an intelligent grinding wheel, which will provide on-line information about process variables such as temperature and forces. This is a critical issue in the advance towards a zero-defect grinding process.
Keywords: cyber-physical systems; digital twin; advanced manufacturing; grinding process; grinding wheel (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1999-5903/12/9/159/pdf (application/pdf)
https://www.mdpi.com/1999-5903/12/9/159/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:12:y:2020:i:9:p:159-:d:417253
Access Statistics for this article
Future Internet is currently edited by Ms. Grace You
More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().