EconPapers    
Economics at your fingertips  
 

PECSA: Practical Edge Computing Service Architecture Applicable to Adaptive IoT-Based Applications

Jianhua Liu and Zibo Wu
Additional contact information
Jianhua Liu: School of Avionics and Electronics Engineering, Civil Aviation Flight University of China, Guanghan 618307, China
Zibo Wu: School of Avionics and Electronics Engineering, Civil Aviation Flight University of China, Guanghan 618307, China

Future Internet, 2021, vol. 13, issue 11, 1-22

Abstract: The cloud-based Internet of Things (IoT-Cloud) combines the advantages of the IoT and cloud computing, which not only expands the scope of cloud computing but also enhances the data processing capability of the IoT. Users always seek affordable and efficient services, which can be completed by the cooperation of all available network resources, such as edge computing nodes. However, current solutions exhibit significant security and efficiency problems that must be solved. Insider attacks could degrade the performance of the IoT-Cloud due to its natural environment and inherent open construction. Unfortunately, traditional security approaches cannot defend against these attacks effectively. In this paper, a novel practical edge computing service architecture (PECSA), which integrates a trust management methodology with dynamic cost evaluation schemes, is proposed to address these problems. In the architecture, the edge network devices and edge platform cooperate to achieve a shorter response time and/or less economic costs, as well as to enhance the effectiveness of the trust management methodology, respectively. To achieve faster responses for IoT-based requirements, all the edge computing devices and cloud resources cooperate in a reasonable way by evaluating computational cost and runtime resource capacity in the edge networks. Moreover, when cooperated with the edge platform, the edge networks compute trust values of linked nodes and find the best collaborative approach for each user to meet various service requirements. Experimental results demonstrate the efficiency and the security of the proposed architecture.

Keywords: edge computing; cloud; Internet of Things (IoT); efficiency; trust (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/13/11/294/pdf (application/pdf)
https://www.mdpi.com/1999-5903/13/11/294/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:13:y:2021:i:11:p:294-:d:683448

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:13:y:2021:i:11:p:294-:d:683448