EconPapers    
Economics at your fingertips  
 

Adaptive Weighted Multi-Level Fusion of Multi-Scale Features: A New Approach to Pedestrian Detection

Yao Xu and Qin Yu
Additional contact information
Yao Xu: College of Electrical Engineering, Sichuan University, Chengdu 610065, China
Qin Yu: College of Electrical Engineering, Sichuan University, Chengdu 610065, China

Future Internet, 2021, vol. 13, issue 2, 1-16

Abstract: Great achievements have been made in pedestrian detection through deep learning. For detectors based on deep learning, making better use of features has become the key to their detection effect. While current pedestrian detectors have made efforts in feature utilization to improve their detection performance, the feature utilization is still inadequate. To solve the problem of inadequate feature utilization, we proposed the Multi-Level Feature Fusion Module (MFFM) and its Multi-Scale Feature Fusion Unit (MFFU) sub-module, which connect feature maps of the same scale and different scales by using horizontal and vertical connections and shortcut structures. All of these connections are accompanied by weights that can be learned; thus, they can be used as adaptive multi-level and multi-scale feature fusion modules to fuse the best features. Then, we built a complete pedestrian detector, the Adaptive Feature Fusion Detector (AFFDet), which is an anchor-free one-stage pedestrian detector that can make full use of features for detection. As a result, compared with other methods, our method has better performance on the challenging Caltech Pedestrian Detection Benchmark (Caltech) and has quite competitive speed. It is the current state-of-the-art one-stage pedestrian detection method.

Keywords: pedestrian detection; adaptive feature fusion; multi-scale; anchor-free; convolutional neural network (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/13/2/38/pdf (application/pdf)
https://www.mdpi.com/1999-5903/13/2/38/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:13:y:2021:i:2:p:38-:d:491522

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:13:y:2021:i:2:p:38-:d:491522