EconPapers    
Economics at your fingertips  
 

Spectrum Demand Forecasting for IoT Services

Daniel Jaramillo-Ramirez and Manuel Perez
Additional contact information
Daniel Jaramillo-Ramirez: Electronics Department, School of Engineering, Pontificia Universidad Javeriana, Bogota 110231, Colombia
Manuel Perez: Electronics Department, School of Engineering, Pontificia Universidad Javeriana, Bogota 110231, Colombia

Future Internet, 2021, vol. 13, issue 9, 1-24

Abstract: The evolution of IoT has come with the challenge of connecting not only a massive number of devices, but also providing an always wider variety of services. In the next few years, a big increase in the number of connected devices is expected, together with an important increase in the amount of traffic generated. Never before have wireless communications permeated so deeply in all industries and economic sectors. Therefore, it is crucial to correctly forecast the spectrum needs, which bands should be used for which services, and the economic potential of its utilization. This paper proposes a methodology for spectrum forecasting consisting of two phases: a market study and a spectrum forecasting model. The market study determines the main drivers of the IoT industry for any country: services, technologies, frequency bands, and the number of devices that will require IoT connectivity. The forecasting model takes the market study as the input and calculates the spectrum demand in 5 steps: Defining scenarios for spectrum contention, calculating the offered traffic load, calculating a capacity for some QoS requirements, finding the spectrum required, and adjusting according to key spectral efficiency determinants. This methodology is applied for Colombia’s IoT spectrum forecast. We provide a complete step-by-step implementation in fourteen independent spectrum contention scenarios, calculating offered traffic, required capacity, and spectrum for cellular licensed bands and non-cellular unlicensed bands in a 10-year period. Detailed results are presented specifying coverage area requirements per economic sector, frequency band, and service. The need for higher teledensity and higher spectral efficiency turns out to be a determining factor for spectrum savings.

Keywords: Internet of Things (IoT); Machine to Machine (M2M); radio spectrum; spectrum requirements; spectrum calculation; traffic prediction (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/13/9/232/pdf (application/pdf)
https://www.mdpi.com/1999-5903/13/9/232/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:13:y:2021:i:9:p:232-:d:631077

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:13:y:2021:i:9:p:232-:d:631077