EconPapers    
Economics at your fingertips  
 

Controlling the Trade-Off between Resource Efficiency and User Satisfaction in NDNs Based on Naïve Bayes Data Classification and Lagrange Method

Abdelkader Tayeb Herouala, Chaker Abdelaziz Kerrache, Benameur Ziani, Carlos T. Calafate, Nasreddine Lagraa and Abdou el Karim Tahari
Additional contact information
Abdelkader Tayeb Herouala: Laboratoire d’Informatique et de Mathématiques, Université Amar Telidji de Laghouat, Laghouat 03000, Algeria
Chaker Abdelaziz Kerrache: Laboratoire d’Informatique et de Mathématiques, Université Amar Telidji de Laghouat, Laghouat 03000, Algeria
Benameur Ziani: Laboratoire d’Informatique et de Mathématiques, Université Amar Telidji de Laghouat, Laghouat 03000, Algeria
Carlos T. Calafate: Computer Engineering Department (DISCA), Universitat Politècnica de València, 46022 Valencia, Spain
Nasreddine Lagraa: Laboratoire d’Informatique et de Mathématiques, Université Amar Telidji de Laghouat, Laghouat 03000, Algeria
Abdou el Karim Tahari: Laboratoire d’Informatique et de Mathématiques, Université Amar Telidji de Laghouat, Laghouat 03000, Algeria

Future Internet, 2022, vol. 14, issue 2, 1-14

Abstract: This paper addresses the fundamental problem of the trade-off between resource efficiency and user satisfaction in the limited environments of Named Data Networks (NDNs). The proposed strategy is named RADC (Resource Allocation based Data Classification), which aims at managing such trade-off by controlling the system’s fairness index. To this end, a machine learning technique based on Multinomial Naïve Bayes is used to classify the received contents. Then, an adaptive resource allocation strategy based on the Lagrange utility function is proposed. To cache the received content, an adequate content placement and a replacement mechanism are enforced. Simulation at the system level shows that this strategy could be a powerful tool for administrators to manage the trade-off between efficiency and user satisfaction.

Keywords: named data network; cache strategy; machine learning; placement strategy; name classification; resource allocation (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/14/2/48/pdf (application/pdf)
https://www.mdpi.com/1999-5903/14/2/48/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:14:y:2022:i:2:p:48-:d:739345

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:14:y:2022:i:2:p:48-:d:739345