EconPapers    
Economics at your fingertips  
 

Optimal Mobility-Aware Wireless Edge Cloud Support for the Metaverse

Zhaohui Huang () and Vasilis Friderikos
Additional contact information
Zhaohui Huang: Center of Telecommunication Research, King’s College London, London WC2R 2LS, UK
Vasilis Friderikos: Center of Telecommunication Research, King’s College London, London WC2R 2LS, UK

Future Internet, 2023, vol. 15, issue 2, 1-20

Abstract: Mobile-augmented-reality (MAR) applications extended into the metaverse could provide mixed and immersive experiences by amalgamating the virtual and physical worlds. However, the consideration of joining MAR and the metaverse requires reliable and high-quality support for foreground interactions and rich background content from these applications, which intensifies their consumption of energy, caching and computing resources. To tackle these challenges, a more flexible request assignment and resource allocation framework with more efficient processing are proposed in this paper through anchoring decomposed metaverse AR services at different edge nodes and proactively caching background metaverse region models embedded with target augmented-reality objects (AROs). Advanced terminals are also considered to further reduce service delays at an acceptable energy-consumption cost. We, then, propose and solve a joint-optimization problem which explicitly considers the balance between service delay and energy consumption under the constraints of perceived user quality in a mobility event. By also explicitly taking into account the capabilities of user terminals, the proposed optimized scheme is compared to a terminal-oblivious scheme. According to a wide set of numerical investigations, the proposed scheme has wide-ranging advantages in service latency and energy efficiency over other nominal baseline schemes which neglect the capabilities of terminals, user physical mobility, service decomposition and the inherent multimodality of the metaverse MAR service.

Keywords: metaverse; beyond 5G (B5G); augmented reality; mobility; structural similarity (SSIM); energy consumption (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/15/2/47/pdf (application/pdf)
https://www.mdpi.com/1999-5903/15/2/47/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:15:y:2023:i:2:p:47-:d:1046846

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:47-:d:1046846