EconPapers    
Economics at your fingertips  
 

Dual-Channel Feature Enhanced Collaborative Filtering Recommendation Algorithm

Yuanyou Ou and Baoning Niu ()
Additional contact information
Yuanyou Ou: College of Information and Computer, Taiyuan University of Technology, Jinzhong 030600, China
Baoning Niu: College of Information and Computer, Taiyuan University of Technology, Jinzhong 030600, China

Future Internet, 2023, vol. 15, issue 6, 1-19

Abstract: The dual-channel graph collaborative filtering recommendation algorithm (DCCF) suppresses the over-smoothing problem and overcomes the problem of expansion in local structures only in graph collaborative filtering. However, DCCF has the following problems: the fixed threshold of transfer probability leads to a decrease in filtering effect of neighborhood information; the K-means clustering algorithm is prone to trapping clustering results into local optima, resulting in incomplete global interaction graphs; and the impact of time factors on the predicted results was not considered. To solve these problems, a dual-channel feature enhanced collaborative filtering recommendation algorithm (DCFECF) is proposed. Firstly, the self-attention mechanism and weighted average method are used to calculate the threshold of neighborhood transition probability for each order in local convolutional channels; secondly, the K-means++ clustering algorithm is used to determine the clustering center in the global convolutional channel, and the fuzzy C-means clustering algorithm is used for clustering to solve the local optimal problem; then, time factor is introduced to further improve predicted results, making them more accurate. Comparative experiments using normalized discounted cumulative gain (NDCG) and recall as evaluation metrics on three publicly available datasets showed that DCFECF improved by up to 2.3% and 4.1% on two metrics compared to DCCF.

Keywords: recommendation algorithm; collaborative filtering; transition probability threshold; fuzzy c-means clustering; time factor (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/15/6/215/pdf (application/pdf)
https://www.mdpi.com/1999-5903/15/6/215/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:15:y:2023:i:6:p:215-:d:1171552

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:15:y:2023:i:6:p:215-:d:1171552