An Improved Deep Learning Model for DDoS Detection Based on Hybrid Stacked Autoencoder and Checkpoint Network
Amthal K. Mousa () and
Mohammed Najm Abdullah
Additional contact information
Amthal K. Mousa: Computer Engineering Department, University of Technology-Iraq, Baghdad P.O. Box 10071, Iraq
Mohammed Najm Abdullah: Computer Engineering Department, University of Technology-Iraq, Baghdad P.O. Box 10071, Iraq
Future Internet, 2023, vol. 15, issue 8, 1-16
Abstract:
The software defined network (SDN) collects network traffic data and proactively manages networks. SDN’s programmability makes it excellent for developing distributed applications, cybersecurity, and decentralized network control in multitenant data centers. This exceptional architecture is vulnerable to security concerns, such as distributed denial of service (DDoS) attacks. DDoS attacks can be very serious due to the fact that they prevent authentic users from accessing, temporarily or indefinitely, resources they would normally expect to have. Moreover, there are continuous efforts from attackers to produce new techniques to avoid detection. Furthermore, many existing DDoS detection methods now in use have a high potential for producing false positives. This motivates us to provide an overview of the research studies that have already been conducted in this area and point out the strengths and weaknesses of each of those approaches. Hence, adopting an optimal detection method is necessary to overcome these issues. Thus, it is crucial to accurately detect abnormal flows to maintain the availability and security of the network. In this work, we propose hybrid deep learning algorithms, which are the long short-term memory network (LSTM) and convolutional neural network (CNN) with a stack autoencoder for DDoS attack detection and checkpoint network, which is a fault tolerance strategy for long-running processes. The proposed approach is trained and tested with the aid of two DDoS attack datasets in the SDN environment: the DDoS attack SDN dataset and Botnet dataset. The results show that the proposed model achieves a very high accuracy, reaching 99.99% in training, 99.92% in validation, and 100% in precision, recall, and F1 score with the DDoS attack SDN dataset. Also, it achieves 100% in all metrics with the Botnet dataset. Experimental results reveal that our proposed model has a high feature extraction ability and high performance in detecting attacks. All performance metrics indicate that the proposed approach is appropriate for a real-world flow detection environment.
Keywords: DDoS detection; distributed denial of service; software defined networking; SDN; network security (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1999-5903/15/8/278/pdf (application/pdf)
https://www.mdpi.com/1999-5903/15/8/278/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:15:y:2023:i:8:p:278-:d:1220746
Access Statistics for this article
Future Internet is currently edited by Ms. Grace You
More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().