EconPapers    
Economics at your fingertips  
 

On Evaluating IoT Data Trust via Machine Learning

Timothy Tadj, Reza Arablouei () and Volkan Dedeoglu
Additional contact information
Timothy Tadj: Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Pullenvale, QLD 4069, Australia
Reza Arablouei: Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Pullenvale, QLD 4069, Australia
Volkan Dedeoglu: Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Pullenvale, QLD 4069, Australia

Future Internet, 2023, vol. 15, issue 9, 1-17

Abstract: Data trust in IoT is crucial for safeguarding privacy, security, reliable decision-making, user acceptance, and complying with regulations. Various approaches based on supervised or unsupervised machine learning (ML) have recently been proposed for evaluating IoT data trust. However, assessing their real-world efficacy is hard mainly due to the lack of related publicly available datasets that can be used for benchmarking. Since obtaining such datasets is challenging, we propose a data synthesis method, called random walk infilling (RWI), to augment IoT time-series datasets by synthesizing untrustworthy data from existing trustworthy data. Thus, RWI enables us to create labeled datasets that can be used to develop and validate ML models for IoT data trust evaluation. We also extract new features from IoT time-series sensor data that effectively capture its autocorrelation as well as its cross-correlation with the data of the neighboring (peer) sensors. These features can be used to learn ML models for recognizing the trustworthiness of IoT sensor data. Equipped with our synthesized ground-truth-labeled datasets and informative correlation-based features, we conduct extensive experiments to critically examine various approaches to evaluating IoT data trust via ML. The results reveal that commonly used ML-based approaches to IoT data trust evaluation, which rely on unsupervised cluster analysis to assign trust labels to unlabeled data, perform poorly. This poor performance is due to the underlying assumption that clustering provides reliable labels for data trust, which is found to be untenable. The results also indicate that ML models, when trained on datasets augmented via RWI and using the proposed features, generalize well to unseen data and surpass existing related approaches. Moreover, we observe that a semi-supervised ML approach that requires only about 10% of the data labeled offers competitive performance while being practically more appealing compared to the fully supervised approaches. The related Python code and data are available online.

Keywords: data synthesis; data trust; IoT sensor data; machine learning; semi-supervised learning; time-series data (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/15/9/309/pdf (application/pdf)
https://www.mdpi.com/1999-5903/15/9/309/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:15:y:2023:i:9:p:309-:d:1238365

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:15:y:2023:i:9:p:309-:d:1238365