EconPapers    
Economics at your fingertips  
 

Efficient Lightweight Image Classification via Coordinate Attention and Channel Pruning for Resource-Constrained Systems

Yao-Liang Chung ()
Additional contact information
Yao-Liang Chung: Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan

Future Internet, 2025, vol. 17, issue 11, 1-21

Abstract: Image classification is central to computer vision, supporting applications from autonomous driving to medical imaging, yet state-of-the-art convolutional neural networks remain constrained by heavy floating-point operations (FLOPs) and parameter counts on edge devices. To address this accuracy–efficiency trade-off, we propose a unified lightweight framework built on a pruning-aware coordinate attention block (PACB). PACB integrates coordinate attention (CA) with L1-regularized channel pruning, enriching feature representation while enabling structured compression. Applied to MobileNetV3 and RepVGG, the framework achieves substantial efficiency gains. On GTSRB, MobileNetV3 parameters drop from 16.239 M to 9.871 M (–6.37 M) and FLOPs from 11.297 M to 8.552 M (–24.3%), with accuracy improving from 97.09% to 97.37%. For RepVGG, parameters fall from 7.683 M to 7.093 M (–0.59 M) and FLOPs from 31.264 M to 27.918 M (–3.35 M), with only ~0.51% average accuracy loss across CIFAR-10, Fashion-MNIST, and GTSRB. Complexity analysis further confirms PACB does not increase asymptotic order, since the additional CA operations contribute only lightweight lower-order terms. These results demonstrate that coupling CA with structured pruning yields a scalable accuracy–efficiency trade-off under hardware-agnostic metrics, making PACB a promising, deployment-ready solution for mobile and edge applications.

Keywords: lightweight image classification; coordinate attention; channel pruning; resource-constrained systems; MobileNetV3; RepVGG; deep learning optimization (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/17/11/489/pdf (application/pdf)
https://www.mdpi.com/1999-5903/17/11/489/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:17:y:2025:i:11:p:489-:d:1779627

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-01
Handle: RePEc:gam:jftint:v:17:y:2025:i:11:p:489-:d:1779627