EconPapers    
Economics at your fingertips  
 

On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification

Gianmarco Baldini ()
Additional contact information
Gianmarco Baldini: European Commission, Joint Research Centre, 21027 Ispra, Italy

Future Internet, 2025, vol. 17, issue 2, 1-23

Abstract: The classification of the wireless propagation channel between Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) is useful in the operation of wireless communication systems. The research community has increasingly investigated the application of machine learning (ML) to LOS/NLOS classification and this paper is part of this trend, but not all the different aspects of ML have been analyzed. In the general ML domain, poisoning and adversarial attacks and the related mitigation techniques are an active area of research. Such attacks aim to hamper the ML classification process by poisoning the data set. Mitigation techniques are designed to counter this threat using different approaches. Poisoning attacks in LOS/NLOS classification have not received significant attention by the wireless communication community and this paper aims to address this gap by proposing the application of a specific mitigation technique based on outlier detection algorithms. The rationale is that poisoned samples can be identified as outliers from legitimate samples. In particular, the study described in this paper proposes a recent outlier detection algorithm, which has low computing complexity: the sparse data observers (SDOs) algorithm. The study proposes a comprehensive analysis of both conventional and novel types of attacks and related mitigation techniques based on outlier detection algorithms for UltraWideBand (UWB) channel classification. The proposed techniques are applied to two data sets: the public eWINE data set with seven different UWB LOS/NLOS different environments and a radar data set with the LOS/NLOS condition. The results show that the SDO algorithm outperforms other outlier detection algorithms for attack detection like the isolation forest (iForest) algorithm and the one-class support vector machine (OCSVM) in most of the scenarios and attacks, and it is quite competitive in the task of increasing the UWB LOS/NLOS classification accuracy through sanitation in comparison to the poisoned model.

Keywords: security; wireless communication; deep learning; machine learning (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/17/2/60/pdf (application/pdf)
https://www.mdpi.com/1999-5903/17/2/60/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:17:y:2025:i:2:p:60-:d:1582830

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jftint:v:17:y:2025:i:2:p:60-:d:1582830