EconPapers    
Economics at your fingertips  
 

Significance of Machine Learning-Driven Algorithms for Effective Discrimination of DDoS Traffic Within IoT Systems

Mohammed N. Alenezi ()
Additional contact information
Mohammed N. Alenezi: Computer Science & Information Systems Department, The Public Authority for Applied Education and Training, Safat 13147, Kuwait

Future Internet, 2025, vol. 17, issue 6, 1-26

Abstract: As digital infrastructure continues to expand, networks, web services, and Internet of Things (IoT) devices become increasingly vulnerable to distributed denial of service (DDoS) attacks. Remarkably, IoT devices have become attracted to DDoS attacks due to their common deployment and limited applied security measures. Therefore, attackers take advantage of the growing number of unsecured IoT devices to reflect massive traffic that overwhelms networks and disrupts necessary services, making protection of IoT devices against DDoS attacks a major concern for organizations and administrators. In this paper, the effectiveness of supervised machine learning (ML) classification and deep learning (DL) algorithms in detecting DDoS attacks on IoT networks was investigated by conducting an extensive analysis of network traffic dataset (legitimate and malicious). The performance of the models and data quality improved when emphasizing the impact of feature selection and data pre-processing approaches. Five machine learning models were evaluated by utilizing the Edge-IIoTset dataset: Random Forest (RF), Support Vector Machine (SVM), Long Short-Term Memory (LSTM), and K-Nearest Neighbors (KNN) with multiple K values, and Convolutional Neural Network (CNN). Findings revealed that the RF model outperformed other models by delivering optimal detection speed and remarkable performance across all evaluation metrics, while KNN (K = 7) emerged as the most efficient model in terms of training time.

Keywords: artificial intelligence; machine learning; DDoS; deep learning; network security; detection; IoT security (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1999-5903/17/6/266/pdf (application/pdf)
https://www.mdpi.com/1999-5903/17/6/266/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:17:y:2025:i:6:p:266-:d:1681648

Access Statistics for this article

Future Internet is currently edited by Ms. Grace You

More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-19
Handle: RePEc:gam:jftint:v:17:y:2025:i:6:p:266-:d:1681648