An Optimized Transformer–GAN–AE for Intrusion Detection in Edge and IIoT Systems: Experimental Insights from WUSTL-IIoT-2021, EdgeIIoTset, and TON_IoT Datasets
Ahmad Salehiyan,
Pardis Sadatian Moghaddam and
Masoud Kaveh ()
Additional contact information
Ahmad Salehiyan: School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK 74078, USA
Pardis Sadatian Moghaddam: Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA
Masoud Kaveh: Department of Information and Communication Engineering, Aalto University, 02150 Espoo, Finland
Future Internet, 2025, vol. 17, issue 7, 1-34
Abstract:
The rapid expansion of Edge and Industrial Internet of Things (IIoT) systems has intensified the risk and complexity of cyberattacks. Detecting advanced intrusions in these heterogeneous and high-dimensional environments remains challenging. As the IIoT becomes integral to critical infrastructure, ensuring security is crucial to prevent disruptions and data breaches. Traditional IDS approaches often fall short against evolving threats, highlighting the need for intelligent and adaptive solutions. While deep learning (DL) offers strong capabilities for pattern recognition, single-model architectures often lack robustness. Thus, hybrid and optimized DL models are increasingly necessary to improve detection performance and address data imbalance and noise. In this study, we propose an optimized hybrid DL framework that combines a transformer, generative adversarial network (GAN), and autoencoder (AE) components, referred to as Transformer–GAN–AE, for robust intrusion detection in Edge and IIoT environments. To enhance the training and convergence of the GAN component, we integrate an improved chimp optimization algorithm (IChOA) for hyperparameter tuning and feature refinement. The proposed method is evaluated using three recent and comprehensive benchmark datasets, WUSTL-IIoT-2021, EdgeIIoTset, and TON_IoT, widely recognized as standard testbeds for IIoT intrusion detection research. Extensive experiments are conducted to assess the model’s performance compared to several state-of-the-art techniques, including standard GAN, convolutional neural network (CNN), deep belief network (DBN), time-series transformer (TST), bidirectional encoder representations from transformers (BERT), and extreme gradient boosting (XGBoost). Evaluation metrics include accuracy, recall, AUC, and run time. Results demonstrate that the proposed Transformer–GAN–AE framework outperforms all baseline methods, achieving a best accuracy of 98.92%, along with superior recall and AUC values. The integration of IChOA enhances GAN stability and accelerates training by optimizing hyperparameters. Together with the transformer for temporal feature extraction and the AE for denoising, the hybrid architecture effectively addresses complex, imbalanced intrusion data. The proposed optimized Transformer–GAN–AE model demonstrates high accuracy and robustness, offering a scalable solution for real-world Edge and IIoT intrusion detection.
Keywords: Industrial Internet of Things; intrusion detection; transformer; generative adversarial network; autoencoder; chimp optimization algorithm (search for similar items in EconPapers)
JEL-codes: O3 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1999-5903/17/7/279/pdf (application/pdf)
https://www.mdpi.com/1999-5903/17/7/279/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jftint:v:17:y:2025:i:7:p:279-:d:1686407
Access Statistics for this article
Future Internet is currently edited by Ms. Grace You
More articles in Future Internet from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().