EconPapers    
Economics at your fingertips  
 

Algorithm for Computing Approximate Nash Equilibrium in Continuous Games with Application to Continuous Blotto

Sam Ganzfried
Additional contact information
Sam Ganzfried: Ganzfried Research, Miami Beach, FL 33139, USA

Games, 2021, vol. 12, issue 2, 1-11

Abstract: Successful algorithms have been developed for computing Nash equilibrium in a variety of finite game classes. However, solving continuous games—in which the pure strategy space is (potentially uncountably) infinite—is far more challenging. Nonetheless, many real-world domains have continuous action spaces, e.g., where actions refer to an amount of time, money, or other resource that is naturally modeled as being real-valued as opposed to integral. We present a new algorithm for approximating Nash equilibrium strategies in continuous games. In addition to two-player zero-sum games, our algorithm also applies to multiplayer games and games with imperfect information. We experiment with our algorithm on a continuous imperfect-information Blotto game, in which two players distribute resources over multiple battlefields. Blotto games have frequently been used to model national security scenarios and have also been applied to electoral competition and auction theory. Experiments show that our algorithm is able to quickly compute close approximations of Nash equilibrium strategies for this game.

Keywords: continuous game; national security; Blotto game; imperfect information (search for similar items in EconPapers)
JEL-codes: C C7 C70 C71 C72 C73 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/2073-4336/12/2/47/pdf (application/pdf)
https://www.mdpi.com/2073-4336/12/2/47/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jgames:v:12:y:2021:i:2:p:47-:d:566824

Access Statistics for this article

Games is currently edited by Ms. Susie Huang

More articles in Games from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jgames:v:12:y:2021:i:2:p:47-:d:566824