EconPapers    
Economics at your fingertips  
 

Investigating the Relationship Between Topographic Variables and Wildfire Burn Severity

Linh Nguyen Van and Giha Lee ()
Additional contact information
Linh Nguyen Van: School of Advanced Science and Technology Coverage, Kyungpook National University, Sangju 37224, Republic of Korea
Giha Lee: School of Advanced Science and Technology Coverage, Kyungpook National University, Sangju 37224, Republic of Korea

Geographies, 2025, vol. 5, issue 3, 1-17

Abstract: Wildfire behavior and post-fire effects are strongly modulated by terrain, yet the relative influence of individual topographic factors on burn severity remains incompletely quantified at landscape scales. The Composite Burn Index (CBI) provides a field-calibrated measure of severity, but large-area analyses have been hampered by limited plot density and cumbersome data extraction workflows. In this study, we paired 6150 CBI plots from 234 U.S. wildfire events (1994–2017) with 30 m SRTM DEM, extracting mean elevation, slope, and compass aspect within a 90 m buffer around each plot to minimize geolocation noise. Topographic variables were grouped into ecologically meaningful classes—six elevation belts (≤500 m to >2500 m), six slope bins (≤5° to >25°), and eight aspect octants—and their relationships with CBI were evaluated using Tukey HSD post hoc comparisons. Our findings show that all three factors exerted highly significant influences on severity ( p < 0.001): mean CBI peaked in the 1500–2000 m belt (0.42 higher than lowlands), rose almost monotonically with steepness to slopes > 20° (0.37 higher than <5°), and was greatest on east- and northwest-facing slopes (0.19 higher than south-facing aspects). Further analysis revealed that burn severity emerges from strongly context-dependent synergies among elevation, slope, and aspect, rather than from simple additive effects. By demonstrating a rapid, reproducible workflow for terrain-aware severity assessment entirely within GEE, the study provides both methodological guidance and actionable insights for fuel-management planning, risk mapping, and post-fire restoration prioritization.

Keywords: burn severity; composite burn index; topography (search for similar items in EconPapers)
JEL-codes: Q1 Q15 Q5 Q53 Q54 Q56 Q57 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2673-7086/5/3/47/pdf (application/pdf)
https://www.mdpi.com/2673-7086/5/3/47/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jgeogr:v:5:y:2025:i:3:p:47-:d:1741508

Access Statistics for this article

Geographies is currently edited by Ms. Fannie Xu

More articles in Geographies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-04
Handle: RePEc:gam:jgeogr:v:5:y:2025:i:3:p:47-:d:1741508