Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation
Carlos Fernández-Llatas,
Teresa Meneu,
Vicente Traver and
José-Miguel Benedi
Additional contact information
Carlos Fernández-Llatas: Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
Teresa Meneu: Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
Vicente Traver: Instituto Universitario de Investigación de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
José-Miguel Benedi: Instituto Tecnológico de Informática (ITI), Universitat Politècnica de Vaència, Camino de Vera S/N, Valencia 46022, Spain
IJERPH, 2013, vol. 10, issue 11, 1-12
Abstract:
Born in the early nineteen nineties, evidence-based medicine (EBM) is a paradigm intended to promote the integration of biomedical evidence into the physicians daily practice. This paradigm requires the continuous study of diseases to provide the best scientific knowledge for supporting physicians in their diagnosis and treatments in a close way. Within this paradigm, usually, health experts create and publish clinical guidelines, which provide holistic guidance for the care for a certain disease. The creation of these clinical guidelines requires hard iterative processes in which each iteration supposes scientific progress in the knowledge of the disease. To perform this guidance through telehealth, the use of formal clinical guidelines will allow the building of care processes that can be interpreted and executed directly by computers. In addition, the formalization of clinical guidelines allows for the possibility to build automatic methods, using pattern recognition techniques, to estimate the proper models, as well as the mathematical models for optimizing the iterative cycle for the continuous improvement of the guidelines. However, to ensure the efficiency of the system, it is necessary to build a probabilistic model of the problem. In this paper, an interactive pattern recognition approach to support professionals in evidence-based medicine is formalized.
Keywords: evidence based medicine; interactive pattern recognition; personalized medicine; clinical guidelines; probabilistic model (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1660-4601/10/11/5671/pdf (application/pdf)
https://www.mdpi.com/1660-4601/10/11/5671/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:10:y:2013:i:11:p:5671-5682:d:30042
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().