EconPapers    
Economics at your fingertips  
 

UV “Indices”—What Do They Indicate?

Hanns Moshammer, Stana Simic and Daniela Haluza
Additional contact information
Hanns Moshammer: Institute for Environmental Health, Center for Public Health, Medical University of Vienna, Vienna 1090, Austria
Stana Simic: Institute for Meteorology, University of Natural Resources and Life Sciences, Vienna 1180, Austria
Daniela Haluza: Institute for Environmental Health, Center for Public Health, Medical University of Vienna, Vienna 1090, Austria

IJERPH, 2016, vol. 13, issue 10, 1-10

Abstract: Ultra-Violet (UV) radiation covers the spectrum of wavelengths from 100 to 400 nm. The potency and biological activity for a variety of endpoints differ by wavelength. For monitoring and communication purposes, different UV action spectra have been developed. These spectra use different weighting functions. The action spectrum for erythemal dose is the most widely used one. This erythemal dose per time or dose-rate has been further simplified into a “UV index”. Following this example, in our review we use the term “index” or (plural) “indices” in a more general description for all simplified single-value measures for any biologically effective UV dose, e.g., for human non-melanoma skin cancer and for previtamin D production rate. Ongoing discussion about the existence of an increased melanoma risk due to UV-A exposure underscores the uncertainties inherent in current weighting functions. Thus, we performed an online literature search to review the data basis for these indices, to understand their relevance for an individual, and to assess the applicability of the indices for a range of exposure scenarios. Even for natural (solar) UV, the spectral composition varies spatially and temporally. Artificial UV sources and personal protection introduce further variation to the spectral composition. Many biological effects are proposed for UV radiation. Only few endpoints have been studied sufficiently to estimate a reliable index. Weighting functions for chronic effects and most importantly for cancer endpoints have been developed in animal models, and often for proxy endpoints only. Epidemiological studies on biological effects of UV radiation should not only depend on single-value weighted UV dose estimates (indexes) but should strive for a more detailed description of the individual exposure. A better understanding of the adverse and beneficial effects of UV radiation by wavelength would also improve medical counseling and health communication regarding individual health-supportive behavior.

Keywords: UV indices; weighting function; frequency range; health endpoints (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/13/10/1041/pdf (application/pdf)
https://www.mdpi.com/1660-4601/13/10/1041/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:13:y:2016:i:10:p:1041-:d:81266

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jijerp:v:13:y:2016:i:10:p:1041-:d:81266