An Indoor Monitoring System for Ambient Assisted Living Based on Internet of Things Architecture
Gonçalo Marques and
Rui Pitarma
Additional contact information
Gonçalo Marques: Unit for Inland Development, Polytechnic Institute of Guarda, Avendia Doutor Francisco Sá Carneiro N° 50, 6300-559 Guarda, Portugal
Rui Pitarma: Unit for Inland Development, Polytechnic Institute of Guarda, Avendia Doutor Francisco Sá Carneiro N° 50, 6300-559 Guarda, Portugal
IJERPH, 2016, vol. 13, issue 11, 1-14
Abstract:
The study of systems and architectures for ambient assisted living (AAL) is undoubtedly a topic of great relevance given the aging of the world population. The AAL technologies are designed to meet the needs of the aging population in order to maintain their independence as long as possible. As people typically spend more than 90% of their time in indoor environments, indoor air quality (iAQ) is perceived as an imperative variable to be controlled for the inhabitants’ wellbeing and comfort. Advances in networking, sensors, and embedded devices have made it possible to monitor and provide assistance to people in their homes. The continuous technological advancements make it possible to build smart objects with great capabilities for sensing and connecting several possible advancements in ambient assisted living systems architectures. Indoor environments are characterized by several pollutant sources. Most of the monitoring frameworks instantly accessible are exceptionally costly and only permit the gathering of arbitrary examples. iAQ is an indoor air quality system based on an Internet of Things paradigm that incorporates in its construction Arduino, ESP8266, and XBee technologies for processing and data transmission and micro sensors for data acquisition. It also allows access to data collected through web access and through a mobile application in real time, and this data can be accessed by doctors in order to support medical diagnostics. Five smaller scale sensors of natural parameters (air temperature, moistness, carbon monoxide, carbon dioxide, and glow) were utilized. Different sensors can be included to check for particular contamination. The results reveal that the system can give a viable indoor air quality appraisal in order to anticipate technical interventions for improving indoor air quality. Indeed indoor air quality might be distinctively contrasted with what is normal for a quality living environment.
Keywords: indoor air quality; indoor environment; air quality monitoring; wireless sensor network; ZigBee; gas sensors; smart cities; ambient assisted living; Internet of Things (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1660-4601/13/11/1152/pdf (application/pdf)
https://www.mdpi.com/1660-4601/13/11/1152/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:13:y:2016:i:11:p:1152-:d:83112
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().