Empirical Model for Evaluating PM 10 Concentration Caused by River Dust Episodes
Chao-Yuan Lin,
Mon-Ling Chiang and
Cheng-Yu Lin
Additional contact information
Chao-Yuan Lin: Department of Soil and Water Conservation, National Chung Hsing University, 250, Kuo-Kuang Rd., Taichung 40227, Taiwan
Mon-Ling Chiang: Department of Soil and Water Conservation, National Chung Hsing University, 250, Kuo-Kuang Rd., Taichung 40227, Taiwan
Cheng-Yu Lin: Department of Soil and Water Conservation, National Chung Hsing University, 250, Kuo-Kuang Rd., Taichung 40227, Taiwan
IJERPH, 2016, vol. 13, issue 6, 1-16
Abstract:
Around the estuary of the Zhuo-Shui River in Taiwan, the waters recede during the winter, causing an increase in bare land area and exposing a large amount of fine earth and sand particles that were deposited on the riverbed. Observations at the site revealed that when northeastern monsoons blow over bare land without vegetation or water cover, the fine particles are readily lifted by the wind, forming river dust, which greatly endangers the health of nearby residents. Therefore, determining which factors affect river dust and constructing a model to predict river dust concentration are extremely important in the research and development of a prototype warning system for areas at risk of river dust emissions. In this study, the region around the estuary of the Zhuo-Shui River (from the Zi-Qiang Bridge to the Xi-Bin Bridge) was selected as the research area. Data from a nearby air quality monitoring station were used to screen for days with river dust episodes. The relationships between PM 10 concentration and meteorological factors or bare land area were analyzed at different temporal scales to explore the factors that affect river dust emissions. Study results showed that no single factor alone had adequate power to explain daily average or daily maximum PM 10 concentration. Stepwise regression analysis of multiple factors showed that the model could not effectively predict daily average PM 10 concentration, but daily maximum PM 10 concentration could be predicted by a combination of wind velocity, temperature, and bare land area; the coefficient of determination for this model was 0.67. It was inferred that river dust episodes are caused by the combined effect of multiple factors. In addition, research data also showed a time lag effect between meteorological factors and hourly PM 10 concentration. This characteristic was applied to the construction of a prediction model, and can be used in an early warning system for local residents.
Keywords: river dust episode; PM 10; regression analysis; supervised classification (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/13/6/553/pdf (application/pdf)
https://www.mdpi.com/1660-4601/13/6/553/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:13:y:2016:i:6:p:553-:d:71269
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().