In Situ, High-Resolution Profiles of Labile Metals in Sediments of Lake Taihu
Dan Wang,
Mengdan Gong,
Yangyang Li,
Lv Xu,
Yan Wang,
Rui Jing,
Shiming Ding and
Chaosheng Zhang
Additional contact information
Dan Wang: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Mengdan Gong: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Yangyang Li: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Lv Xu: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
Yan Wang: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Rui Jing: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Shiming Ding: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
Chaosheng Zhang: International Network for Environment and Health, School of Geography and Archaeology, National University of Ireland, Galway, University Road, Galway H91 CF50, Ireland
IJERPH, 2016, vol. 13, issue 9, 1-18
Abstract:
Characterizing labile metal distribution and biogeochemical behavior in sediments is crucial for understanding their contamination characteristics in lakes, for which in situ, high-resolution data is scare. The diffusive gradient in thin films (DGT) technique was used in-situ at five sites across Lake Taihu in the Yangtze River delta in China to characterize the distribution and mobility of eight labile metals (Fe, Mn, Zn, Ni, Cu, Pb, Co and Cd) in sediments at a 3 mm spatial resolution. The results showed a great spatial heterogeneity in the distributions of redox-sensitive labile Fe, Mn and Co in sediments, while other metals had much less marked structure, except for downward decreases of labile Pb, Ni, Zn and Cu in the surface sediment layers. Similar distributions were found between labile Mn and Co and among labile Ni, Cu and Zn, reflecting a close link between their geochemical behaviors. The relative mobility, defined as the ratio of metals accumulated by DGT to the total contents in a volume of sediments with a thickness of 10 mm close to the surface of DGT probe, was the greatest for Mn and Cd, followed by Zn, Ni, Cu and Co, while Pb and Fe had the lowest mobility; this order generally agreed with that defined by the modified BCR approach. Further analyses showed that the downward increases of pH values in surface sediment layer may decrease the lability of Pb, Ni, Zn and Cu as detected by DGT, while the remobilization of redox-insensitive metals in deep sediment layer may relate to Mn cycling through sulphide coprecipitation, reflected by several corresponding minima between these metals and Mn. These in situ data provided the possibility for a deep insight into the mechanisms involved in the remobilization of metals in freshwater sediments.
Keywords: metals; high resolution; diffusive gradient in thin films; relative mobility; sediment; in-situ (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1660-4601/13/9/884/pdf (application/pdf)
https://www.mdpi.com/1660-4601/13/9/884/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:13:y:2016:i:9:p:884-:d:77532
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().