EconPapers    
Economics at your fingertips  
 

Occurrence of Emerging Micropollutants in Water Systems in Gauteng, Mpumalanga, and North West Provinces, South Africa

Elijah M. M. Wanda, Hlengilizwe Nyoni, Bhekie B. Mamba and Titus A. M. Msagati
Additional contact information
Elijah M. M. Wanda: Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, P.O. Box 392, UNISA 003, Florida, Roodepoort 1709, Johannesburg, South Africa
Hlengilizwe Nyoni: Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, P.O. Box 392, UNISA 003, Florida, Roodepoort 1709, Johannesburg, South Africa
Bhekie B. Mamba: Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, P.O. Box 392, UNISA 003, Florida, Roodepoort 1709, Johannesburg, South Africa
Titus A. M. Msagati: Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, P.O. Box 392, UNISA 003, Florida, Roodepoort 1709, Johannesburg, South Africa

IJERPH, 2017, vol. 14, issue 1, 1-28

Abstract: The ubiquitous occurrence of emerging micropollutants (EMPs) in water is an issue of growing environmental-health concern worldwide. However, there remains a paucity of data regarding their levels and occurrence in water. This study determined the occurrence of EMPs namely: carbamazepine (CBZ), galaxolide (HHCB), caffeine (CAF), tonalide (AHTN), 4-nonylphenol (NP), and bisphenol A (BPA) in water from Gauteng, Mpumalanga, and North West provinces, South Africa using comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry (GCxGC-HRTOFMS). Kruskal-Wallis test and ANOVA were performed to determine temporal variations in occurrence of the EMPs. Principal component analysis (PCA) and Surfer Golden Graphics software for surface mapping were used to determine spatial variations in levels and occurrence of the EMPs. The mean levels ranged from 11.22 ± 18.8 ng/L for CAF to 158.49 ± 662 ng/L for HHCB. There was no evidence of statistically significant temporal variations in occurrence of EMPs in water. Nevertheless, their levels and occurrence vary spatially and are a function of two principal components (PCs, PC1 and PC2) which controlled 89.99% of the variance. BPA was the most widely distributed EMP, which was present in 62% of the water samples. The detected EMPs pose ecotoxicological risks in water samples, especially those from Mpumalanga province.

Keywords: drinking water; emerging micropollutants; GCxGC-HRTOFMS; spatial variations; wastewater (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/14/1/79/pdf (application/pdf)
https://www.mdpi.com/1660-4601/14/1/79/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:14:y:2017:i:1:p:79-:d:87813

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jijerp:v:14:y:2017:i:1:p:79-:d:87813