EconPapers    
Economics at your fingertips  
 

Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma

I-Jen Wang and Wilfried J. J. Karmaus
Additional contact information
I-Jen Wang: Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 11267, Taiwan
Wilfried J. J. Karmaus: Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA

IJERPH, 2017, vol. 14, issue 2, 1-14

Abstract: Background: Phthalate exposure may increase the risk of asthma. Little is known about whether oxidative-stress related genes may alter this association. First, this motivated us to investigate whether genetic polymorphisms of the oxidative-stress related genes glutathione S -transferase Mu 1 ( GSTM1 ), glutathione S -transferase pi 1 ( GSTP1 ), superoxide dismutase 2 ( SOD2 ), catalase ( CAT ), myeloperoxidase ( MPO ), and EPHX1 in children are associated with phthalate urine concentrations. Second, we addressed the question whether these genes may affect the influence of phthalates on asthma. Methods: In a case-control study composed of 126 asthmatic children and 327 controls, urine phthalate metabolites (monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono(2-ethyl-5-hydroxyhexyl)phthalate (MEHHP) were measured by UPLC-MS/MS at age 3. Genetic variants were analyzed by TaqMan assay. Information on asthma and environmental exposures was also collected. Analyses of variance and logistic regressions were performed. Results: Urine MEHHP levels were associated with asthma (adjusted OR 1.33, 95% CI (1.11–1.60). Children with the GSTP1 (rs1695) AA and SOD2 (rs5746136) TT genotypes had higher MEHHP levels as compared to GG and CC types, respectively. Since only SOD2 TT genotype was significantly associated with asthma (adjusted OR (95% CI): 2.78 (1.54–5.02)), we estimated whether SOD2 variants modify the association of MEHHP levels and asthma. As MEHHP concentrations were dependent on GSTP1 and SOD2 , but the assessment of interaction requires independent variables, we estimated MEHHP residuals and assessed their interaction, showing that the OR for SOD2 TT was further elevated to 3.32 (1.75–6.32) when the residuals of MEHHP were high. Conclusions: Urine phthalate metabolite concentrations are associated with oxidative-stress related genetic variants. Genetic variants of SOD2 , considered to be reflect oxidative stress metabolisms, might modify the association of phthalate exposure with asthma.

Keywords: phthalate; asthma; oxidative stress; SOD2; GSTP1 (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/14/2/162/pdf (application/pdf)
https://www.mdpi.com/1660-4601/14/2/162/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:14:y:2017:i:2:p:162-:d:89734

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jijerp:v:14:y:2017:i:2:p:162-:d:89734