EconPapers    
Economics at your fingertips  
 

In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans

Lisa Chedik, Dominique Mias-Lucquin, Arnaud Bruyere and Olivier Fardel
Additional contact information
Lisa Chedik: Institut de Recherche en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
Dominique Mias-Lucquin: Institut de Génétique et Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, 35043 Rennes, France
Arnaud Bruyere: Institut de Recherche en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
Olivier Fardel: Institut de Recherche en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France

IJERPH, 2017, vol. 14, issue 7, 1-17

Abstract: Intestinal absorption and brain permeation constitute key parameters of toxicokinetics for pesticides, conditioning their toxicity, including neurotoxicity. However, they remain poorly characterized in humans. The present study was therefore designed to evaluate human intestine and brain permeation for a large set of pesticides ( n = 338) belonging to various chemical classes, using an in silico graphical BOILED-Egg/SwissADME online method based on lipophilicity and polarity that was initially developed for drugs. A high percentage of the pesticides (81.4%) was predicted to exhibit high intestinal absorption, with a high accuracy (96%), whereas a lower, but substantial, percentage (38.5%) displayed brain permeation. Among the pesticide classes, organochlorines ( n = 30) constitute the class with the lowest percentage of intestine-permeant members (40%), whereas that of the organophosphorus compounds ( n = 99) has the lowest percentage of brain-permeant chemicals (9%). The predictions of the permeations for the pesticides were additionally shown to be significantly associated with various molecular descriptors well-known to discriminate between permeant and non-permeant drugs. Overall, our in silico data suggest that human exposure to pesticides through the oral way is likely to result in an intake of these dietary contaminants for most of them and brain permeation for some of them, thus supporting the idea that they have toxic effects on human health, including neurotoxic effects.

Keywords: pesticides; toxicokinetics; intestinal absorption; brain permeation; toxicity; in silico method; prediction (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/14/7/708/pdf (application/pdf)
https://www.mdpi.com/1660-4601/14/7/708/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:14:y:2017:i:7:p:708-:d:103236

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jijerp:v:14:y:2017:i:7:p:708-:d:103236