Smoothed Temporal Atlases of Age-Gender All-Cause Mortality in South Africa
Samuel O. M Manda and
Nada Abdelatif
Additional contact information
Samuel O. M Manda: Biostatistics Unit, South African Medical Research Council, 1 Soutpansberg Road, Pretoria 0001, South Africa
Nada Abdelatif: Biostatistics Unit, South African Medical Research Council, Durban 4091, South Africa
IJERPH, 2017, vol. 14, issue 9, 1-18
Abstract:
Most mortality maps in South Africa and most contried of the sub-Saharan region are static, showing aggregated count data over years or at specific years. Lack of space and temporral dynamanics in these maps may adversely impact on their use and application for vigorous public health policy decisions and interventions. This study aims at describing and modeling sub-national distributions of age–gender specific all-cause mortality and their temporal evolutions from 1997 to 2013 in South Africa. Mortality information that included year, age, gender, and municipality administrative division were obtained from Statistics South Africa for the period. Individual mortality level data were grouped by three ages groups (0–14, 15–64, and 65 and over) and gender (male, female) and aggregated at each of the 234 municipalities in the country. The six age-gender all-cause mortality rates may be related due to shared common social deprivation, health and demographic risk factors. We undertake a joint analysis of the spatial-temporal variation of the six age-gender mortality risks. This is done within a shared component spatial model construction where age-gender common and specific spatial and temporal trends are estiamted using a hierarchical Bayesian spatial model. The results show municipal and temporal differentials in mortality risk profiles between age and gender groupings. High rates were seen in 2005, especially for the 15–64 years age group for both males and females. The dynamic geographical and time distributions of subnational age-gender all-cause mortality contribute to a better understanding of the temporal evolvement and geographical variations in the relationship between demographic composition and burden of diseases in South Africa. This provides useful information for effective monitoring and evaluation of public health policies and programmes targeting mortality reduction across time and sub-populations in the country.
Keywords: all-cause mortality; spatial-temporal model; Bayesian modelling; South Africa (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/14/9/1072/pdf (application/pdf)
https://www.mdpi.com/1660-4601/14/9/1072/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:14:y:2017:i:9:p:1072-:d:112056
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().