EconPapers    
Economics at your fingertips  
 

Enhanced Adsorption Performance of Oxytetracycline by Desugared Reed Residues

Min Zhou, Tao Zhu and Xiaohua Fei
Additional contact information
Min Zhou: School of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
Tao Zhu: Henan College of Transportation, Zhengzhou 450008, China
Xiaohua Fei: Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, Xi’an 710054, China

IJERPH, 2018, vol. 15, issue 10, 1-12

Abstract: The performance of oxytetracycline adsorption by untreated reed roots, stems and leaves, as well as the desugared reed roots, stems and leaves, was investigated with scanning electron microscopy, Fourier-transform infrared spectroscopy, elemental analysis and surface area analysis to understand the adsorption mechanism. The results showed that the adsorption capacities of untreated reed were 416.35 mg/kg for roots, 341.92 mg/kg for stems and 280.21 mg/kg for leaves, and can be increased significantly by a factor of 8–12 after desugarization. The pseudo-first-order kinetic model was more suitable for describing the adsorption kinetics of reed residues, and the isothermal adsorption process was fitted well by both the Langmuir and Freundlich models. The thermodynamic process suggested that the adsorption was a spontaneous endothermic reaction, and mainly physical adsorption-dominated. The desugared reed tissues had a larger surface area and smaller pore area, and the aromaticity of reed residues increased; on the other hand, the polarity and hydrophilicity decreased after desugarization, thus revealing the mechanism of enhanced OTC(oxytetracycline) adsorption by desugared reed residues. This study suggests that the reed residues contribute the complex adsorption ability for both inorganic and organic contaminates. Corruption of the reed can enhance the adsorption; thus, protecting the natural reed residue and letting it naturally corrupt, rather than artificially cleaning it up, can effectively promote the adsorption of pollutants in the environment and protect environmental and public health.

Keywords: oxytetracycline; reed residues; adsorption; desugarization (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1660-4601/15/10/2229/pdf (application/pdf)
https://www.mdpi.com/1660-4601/15/10/2229/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:15:y:2018:i:10:p:2229-:d:175014

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2229-:d:175014