The Effects of Ultrasonic Disintegration as a Function of Waste Activated Sludge Characteristics and Technical Conditions of Conducting the Process—Comprehensive Analysis
Malwina Tytła
Additional contact information
Malwina Tytła: Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland
IJERPH, 2018, vol. 15, issue 10, 1-22
Abstract:
A comprehensive analysis of the effects obtained in the process of ultrasonic disintegration (UD) of waste activated sludge (WAS), was conducted. Sludge samples were collected periodically from Central Wastewater Treatment Plant (WWTP) in Gliwice (Poland) and disintegrated in the two ultrasonic devices of different construction and technical parameters, i.e., WK-2010 (A) and ultrasonic washer (B). The experiments were performed under a constant energy supply per sludge volume E V = 160 kWh·m −3 . The direct and technological effects, i.e., after UD and anaerobic digestion (AD) were investigated, respectively. Statistical analysis showed that characteristics and parameters of the WAS, which affects the magnitude of the direct effects create the following sequence: TS (total solids), VS (volatile solids), ΔT (temperature increase) > EPS (extracellular polymeric substances) > SCOD (soluble chemical oxygen demand) > CST (capillary suction time) > N TOT ( total nitrogen), P TOT (total phosphorus) > pH. Whereas, in the case of technological effects, the above sequence was as follows: TS, VS > CST > N TOT , P TOT > pH. Ultrasonic disintegration of WAS prior to AD increased total biogas production (from 13.0% to 19.7%) and reduced the content of TS (from 4.1% to 8.2%) and VS (5.8% to 9.5%) in comparison to the control sample. This confirms the usefulness of ultrasonic disintegration as an effective method of sludge digestion intensification. The obtained results showed that changes in the characteristics of WAS have a significant impact on the magnitude of the effects of ultrasonic disintegration, especially TS, VS, ΔT, EPS, SCOD and CST. Concluding, it can be inferred that the most promising conditions for ultrasonic pretreatment conducted under constant energy supply per sludge volume, are: low power, long sonication time, large surface area of the emitter, and high increase of sludge temperature while conducting the process.
Keywords: waste activated sludge; ultrasonic disintegration; disintegration effects; sludge characteristics; wastewater treatment plant (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/15/10/2311/pdf (application/pdf)
https://www.mdpi.com/1660-4601/15/10/2311/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:15:y:2018:i:10:p:2311-:d:177115
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().