Space-Time Statistical Insights about Geographic Variation in Lung Cancer Incidence Rates: Florida, USA, 2000–2011
Lan Hu,
Daniel A. Griffith and
Yongwan Chun
Additional contact information
Lan Hu: School of Economic, Political and Policy Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
Daniel A. Griffith: School of Economic, Political and Policy Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
Yongwan Chun: School of Economic, Political and Policy Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
IJERPH, 2018, vol. 15, issue 11, 1-18
Abstract:
The geographic distribution of lung cancer rates tends to vary across a geographic landscape, and covariates (e.g., smoking rates, demographic factors, socio-economic indicators) commonly are employed in spatial analysis to explain the spatial heterogeneity of these cancer rates. However, such cancer risk factors often are not available, and conventional statistical models are unable to fully capture hidden spatial effects in cancer rates. Introducing random effects in the model specifications can furnish an efficient approach to account for variations that are unexplained due to omitted variables. Especially, a random effects model can be effective for a phenomenon that is static over time. The goal of this paper is to investigate geographic variation in Florida lung cancer incidence data for the time period 2000–2011 using random effects models. In doing so, a Moran eigenvector spatial filtering technique is utilized, which can allow a decomposition of random effects into spatially structured (SSRE) and spatially unstructured (SURE) components. Analysis results confirm that random effects models capture a substantial amount of variation in the cancer data. Furthermore, the results suggest that spatial pattern in the cancer data displays a mixture of positive and negative spatial autocorrelation, although the global map pattern of the random effects term may appear random.
Keywords: lung cancer incidence; positive spatial autocorrelation; negative spatial autocorrelation; random effects; spatial autocorrelation mixture (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/15/11/2406/pdf (application/pdf)
https://www.mdpi.com/1660-4601/15/11/2406/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:15:y:2018:i:11:p:2406-:d:179273
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().