Prediction of Prehypertenison and Hypertension Based on Anthropometry, Blood Parameters, and Spirometry
Byeong Mun Heo and
Keun Ho Ryu
Additional contact information
Byeong Mun Heo: Database/Bioinformatics Laboratory, Chungbuk National University, Cheongju 28644, Korea
Keun Ho Ryu: Faculty of Information Technology, Ton Duc Thang University, Hochiminh City 700000, Vietnam
IJERPH, 2018, vol. 15, issue 11, 1-14
Abstract:
Hypertension and prehypertension are risk factors for cardiovascular diseases. However, the associations of both prehypertension and hypertension with anthropometry, blood parameters, and spirometry have not been investigated. The purpose of this study was to identify the risk factors for prehypertension and hypertension in middle-aged Korean adults and to study prediction models of prehypertension and hypertension combined with anthropometry, blood parameters, and spirometry. Binary logistic regression analysis was performed to assess the statistical significance of prehypertension and hypertension, and prediction models were developed using logistic regression, naïve Bayes, and decision trees. Among all risk factors for prehypertension, body mass index (BMI) was identified as the best indicator in both men [odds ratio (OR) = 1.429, 95% confidence interval (CI) = 1.304–1.462)] and women (OR = 1.428, 95% CI = 1.204–1.453). In contrast, among all risk factors for hypertension, BMI (OR = 1.993, 95% CI = 1.818–2.186) was found to be the best indicator in men, whereas the waist-to-height ratio (OR = 2.071, 95% CI = 1.884–2.276) was the best indicator in women. In the prehypertension prediction model, men exhibited an area under the receiver operating characteristic curve (AUC) of 0.635, and women exhibited a predictive power with an AUC of 0.777. In the hypertension prediction model, men exhibited an AUC of 0.700, and women exhibited an AUC of 0.845. This study proposes various risk factors for prehypertension and hypertension, and our findings can be used as a large-scale screening tool for controlling and managing hypertension.
Keywords: machine learning; feature selection; hypertension; prehypertension; anthropometry; spirometry (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1660-4601/15/11/2571/pdf (application/pdf)
https://www.mdpi.com/1660-4601/15/11/2571/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:15:y:2018:i:11:p:2571-:d:183482
Access Statistics for this article
IJERPH is currently edited by Ms. Jenna Liu
More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().