EconPapers    
Economics at your fingertips  
 

Hydrolysis and Photolysis Kinetics, and Identification of Degradation Products of the Novel Bactericide 2-(4-Fluorobenzyl)-5-(Methylsulfonyl)-1,3,4-Oxadiazole in Water

Xingang Meng, Lingzhu Chen, Yuping Zhang, Deyu Hu and Baoan Song
Additional contact information
Xingang Meng: State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
Lingzhu Chen: State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
Yuping Zhang: State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
Deyu Hu: State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
Baoan Song: State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China

IJERPH, 2018, vol. 15, issue 12, 1-11

Abstract: Hydrolysis and photolysis kinetics of Fubianezuofeng (FBEZF) in water were investigated in detail. The hydrolysis half-lives of FBEZF depending on pH, initial concentration, and temperature were (14.44 d at pH = 5; 1.60 d at pH = 7), (36.48 h at 1.0 mg L −1 ; 38.51 h at 5.0 mg L −1 ; and 31.51 h at 10.0 mg L −1 ), and (77.02 h at 15 °C; 38.51 h at 25 °C; 19.80 h at 35 °C; and 3.00 h at 45 °C), respectively. The photolysis half-life of FBEZF in different initial concentrations were 8.77 h at 1.0 mg L −1 , 8.35 h at 5.0 mg L −1 , and 8.66 h at 10.0 mg L −1 , respectively. Results indicated that the degradation of FBEZF followed first-order kinetics, as the initial concentration of FBEZF only had a slight effect on the UV irradiation effects, and the increase in pH and temperature can substantially accelerate the degradation. The hydrolysis Ea of FBEZF was 49.90 kJ mol −1 , which indicates that FBEZF belongs to medium hydrolysis. In addition, the degradation products were identified using ultra-high-performance liquid chromatography coupled with an Orbitrap high-resolution mass spectrometer. One degradation product was extracted and further analyzed by 1 H-NMR, 13 C-NMR, 19 F-NMR, and MS. The degradation product was identified as 2-(4-fluorobenazyl)-5-methoxy-1,3,4-oxadiazole, therefore a degradation mechanism of FBEZF in water was proposed. The research on FBEZF can be helpful for its safety assessment and increase the understanding of FBEZF in water environments.

Keywords: Fubianezuofeng; bactericide; kinetics; mechanism; water; abiotic degradation (search for similar items in EconPapers)
JEL-codes: I I1 I3 Q Q5 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1660-4601/15/12/2741/pdf (application/pdf)
https://www.mdpi.com/1660-4601/15/12/2741/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jijerp:v:15:y:2018:i:12:p:2741-:d:187941

Access Statistics for this article

IJERPH is currently edited by Ms. Jenna Liu

More articles in IJERPH from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2741-:d:187941